1. Name Of The Medicinal Product
CellCept 1 g/5 ml powder for oral suspension.
2. Qualitative And Quantitative Composition
Each bottle contains 35 g mycophenolate mofetil in 110 g powder for oral suspension. 5 ml of the reconstituted suspension contains 1 g of mycophenolate mofetil.
For a full list of excipients, see section 6.1.
3. Pharmaceutical Form
Powder for oral suspension.
4. Clinical Particulars
4.1 Therapeutic Indications
CellCept 1 g/5 ml powder for oral suspension is indicated in combination with ciclosporin and corticosteroids for the prophylaxis of acute transplant rejection in patients receiving allogeneic renal, cardiac or hepatic transplants.
4.2 Posology And Method Of Administration
Treatment with CellCept should be initiated and maintained by appropriately qualified transplant specialists.
Use in renal transplant:
Adults: oral CellCept 1 g/5 ml powder for oral suspension should be initiated within 72 hours following transplantation. The recommended dose in renal transplant patients is 1 g administered twice daily (2 g daily dose), i.e. 5 ml oral suspension twice daily.
Children and adolescents (aged 2 to 18 years): the recommended dose of CellCept 1 g/5 ml powder for oral suspension is 600 mg/m2 administered twice daily (up to a maximum of 2 g/10 ml oral suspension daily). As some adverse reactions occur with greater frequency in this age group (see section 4.8) compared with adults, temporary dose reduction or interruption may be required; these will need to take into account relevant clinical factors including severity of reaction.
Children (< 2 years): there are limited safety and efficacy data in children below the age of 2 years. These are insufficient to make dosage recommendations, and therefore use in this age group is not recommended.
Use in cardiac transplant:
Adults: oral CellCept should be initiated within 5 days following transplantation. The recommended dose in cardiac transplant patients is 1.5 g administered twice daily (3 g daily dose).
Children: no data are available for paediatric cardiac transplant patients.
Use in hepatic transplant:
Adults: IV CellCept should be administered for the first 4 days following hepatic transplant, with oral CellCept initiated as soon after this as it can be tolerated. The recommended oral dose in hepatic transplant patients is 1.5 g administered twice daily (3 g daily dose).
Children: no data are available for paediatric hepatic transplant patients.
Use in elderly ( : the recommended dose of 1 g administered twice a day for renal transplant patients and 1.5 g twice a day for cardiac or hepatic transplant patients is appropriate for the elderly.
Use in renal impairment: in renal transplant patients with severe chronic renal impairment (glomerular filtration rate < 25 ml•min-1•1.73 m-2), outside the immediate post-transplant period, doses greater than 1 g administered twice a day should be avoided. These patients should also be carefully observed. No dose adjustments are needed in patients experiencing delayed renal graft function post-operatively. (see section 5.2). No data are available for cardiac or hepatic transplant patients with severe chronic renal impairment.
Use in severe hepatic impairment: no dose adjustments are needed for renal transplant patients with severe hepatic parenchymal disease. No data are available for cardiac transplant patients with severe hepatic parenchymal disease.
Treatment during rejection episodes: MPA (mycophenolic acid) is the active metabolite of mycophenolate mofetil. Renal transplant rejection does not lead to changes in MPA pharmacokinetics; dosage reduction or interruption of CellCept is not required. There is no basis for CellCept dose adjustment following cardiac transplant rejection. No pharmacokinetic data are available during hepatic transplant rejection.
Note
If required, CellCept 1 g/5 ml powder for oral suspension can be administered via a nasogastric tube with a minimum size of 8 French (minimum 1.7 mm interior diameter).
4.3 Contraindications
Hypersensitivity reactions to CellCept have been observed (see section 4.8). Therefore, CellCept is contraindicated in patients with a hypersensitivity to mycophenolate mofetil or mycophenolic acid.
CellCept is contraindicated in women who are breastfeeding (see section 4.6).
For information on use in pregnancy and contraceptive requirements, see section 4.6.
4.4 Special Warnings And Precautions For Use
Patients receiving immunosuppressive regimens involving combinations of medicinal products, including CellCept, are at increased risk of developing lymphomas and other malignancies, particularly of the skin (see section 4.8). The risk appears to be related to the intensity and duration of immunosuppression rather than to the use of any specific agent. As general advice to minimise the risk for skin cancer, exposure to sunlight and UV light should be limited by wearing protective clothing and using a sunscreen with a high protection factor.
Patients receiving CellCept should be instructed to report immediately any evidence of infection, unexpected bruising, bleeding or any other manifestation of bone marrow depression.
Patients treated with immunosuppressants, including CellCept, are at increased risk for opportunistic infections (bacterial, fungal, viral and protozoal), fatal infections and sepsis (see section 4.8). Among the opportunistic infections are BK virus associated nephropathy and JC virus associated progressive multifocal leukoencephalopathy (PML). These infections are often related to a high total immunosuppressive burden and may lead to serious or fatal conditions that physicians should consider in the differential diagnosis in immunosuppressed patients with deteriorating renal function or neurological symptoms.
Patients receiving CellCept should be monitored for neutropenia, which may be related to CellCept itself, concomitant medications, viral infections, or some combination of these causes. Patients taking CellCept should have complete blood counts weekly during the first month, twice monthly for the second and third months of treatment, then monthly through the first year. If neutropenia develops (absolute neutrophil count < 1.3 x 103/µl), it may be appropriate to interrupt or discontinue CellCept.
Cases of pure red cell aplasia (PRCA) have been reported in patients treated with CellCept in combination with other immunosuppressants. The mechanism for mycophenolate mofetil induced PRCA is unknown. PRCA may resolve with dose reduction or cessation of CellCept therapy. Changes to CellCept therapy should only be undertaken under appropriate supervision in transplant recipients in order to minimise the risk of graft rejection (see section 4.8).
Patients should be advised that during treatment with CellCept, vaccinations may be less effective, and the use of live attenuated vaccines should be avoided (see section 4.5). Influenza vaccination may be of value. Prescribers should refer to national guidelines for influenza vaccination.
Because CellCept has been associated with an increased incidence of digestive system adverse events, including infrequent cases of gastrointestinal tract ulceration, haemorrhage and perforation, CellCept should be administered with caution in patients with active serious digestive system disease.
CellCept is an IMPDH (inosine monophosphate dehydrogenase) inhibitor. On theoretical grounds, therefore, it should be avoided in patients with rare hereditary deficiency of hypoxanthine-guanine phosphoribosyl-transferase (HGPRT) such as Lesch-Nyhan and Kelley-Seegmiller syndrome.
It is recommended that CellCept should not be administered concomitantly with azathioprine because such concomitant administration has not been studied.
In view of the significant reduction in the AUC of MPA by cholestyramine, caution should be used in the concomitant administration of CellCept with medicinal products that interfere with enterohepatic recirculation because of the potential to reduce the efficacy of CellCept.
CellCept 1 g/5 ml powder for oral suspension contains aspartame. Therefore, care should be taken if CellCept 1 g/5 ml powder for oral suspension is administered to patients with phenylketonuria (see section 6.1)
The risk: benefit of mycophenolate mofetil in combination with tacrolimus or sirolimus has not been established (see also section 4.5).
This medicinal product contains sorbitol. Patients with rare hereditary problems of fructose intolerance should not take this medicine.
4.5 Interaction With Other Medicinal Products And Other Forms Of Interaction
Interaction studies have only been performed in adults.
Aciclovir: higher aciclovir plasma concentrations were observed when mycophenolate mofetil was administered with aciclovir in comparison to the administration of aciclovir alone. The changes in MPAG (the phenolic glucuronide of MPA) pharmacokinetics (MPAG increased by 8 %) were minimal and are not considered clinically significant. Because MPAG plasma concentrations are increased in the presence of renal impairment, as are aciclovir concentrations, the potential exists for mycophenolate mofetil and aciclovir, or its prodrugs, e.g. valaciclovir, to compete for tubular secretion and further increases in concentrations of both substances may occur.
Antacids with magnesium and aluminium hydroxides: absorption of mycophenolate mofetil was decreased when administered with antacids.
Cholestyramine: following single dose administration of 1.5 g of mycophenolate mofetil to normal healthy subjects pre-treated with 4 g TID of cholestyramine for 4 days, there was a 40 % reduction in the AUC of MPA. (see section 4.4, and section 5.2). Caution should be used during concomitant administration because of the potential to reduce efficacy of CellCept.
Medicinal products that interfere with enterohepatic circulation: caution should be used with medicinal products that interfere with enterohepatic circulation because of their potential to reduce the efficacy of CellCept.
Ciclosporin A: ciclosporin A (CsA) pharmacokinetics are unaffected by mycophenolate mofetil.
In contrast, if concomitant ciclosporin treatment is stopped, an increase in MPA AUC of around 30% should be expected.
Ganciclovir: based on the results of a single dose administration study of recommended doses of oral mycophenolate and IV ganciclovir and the known effects of renal impairment on the pharmacokinetics of CellCept (see section 4.2) and ganciclovir, it is anticipated that co-administration of these agents (which compete for mechanisms of renal tubular secretion) will result in increases in MPAG and ganciclovir concentration. No substantial alteration of MPA pharmacokinetics is anticipated and CellCept dose adjustment is not required. In patients with renal impairment in which CellCept and ganciclovir or its prodrugs, e.g. valganciclovir, are co
Oral contraceptives: the pharmacokinetics and pharmacodynamics of oral contraceptives were unaffected by coadministration of CellCept (see also section 5.2).
Rifampicin: in patients not also taking ciclosporin, concomitant administration of CellCept and rifampicin resulted in a decrease in MPA exposure (AUC0-12h) of 18% to 70%. It is recommended to monitor MPA exposure levels and to adjust CellCept doses accordingly to maintain clinical efficacy when rifampicin is administered concomitantly.
Sirolimus: in renal transplant patients, concomitant administration of CellCept and CsA resulted in reduced MPA exposures by 30
Sevelamer: decrease in MPA Cmax and AUC0-12 by 30% and 25%, respectively, were observed when CellCept was concomitantly administered with sevelamer without any clinical consequences (i.e. graft rejection). It is recommended, however, to administer CellCept at least one hour before or three hours after sevelamer intake to minimise the impact on the absorption of MPA. There is no data on CellCept with phosphate binders other than sevelamer.
Trimethoprim/sulfamethoxazole:no effect on the bioavailability of MPA was observed.
Norfloxacin and metronidazole: in healthy volunteers, no significant interaction was observed when CellCept was concomitantly administered with norfloxacin and metronidazole separately. However, norfloxacin and metronidazole combined reduced the MPA exposure by approximately 30 % following a single dose of CellCept.
Ciprofloxacin and amoxicillin plus clavulanic acid: Reductions in pre-dose (trough) MPA concentrations of about 50% have been reported in renal transplant recipients in the days immediately following commencement of oral ciprofloxacin or amoxicillin plus clavulanic acid. This effect tended to diminish with continued antibiotic use and to cease within a few days of their discontinuation. The change in predose level may not accurately represent changes in overall MPA exposure. Therefore, a change in the dose of CellCept should not normally be necessary in the absence of clinical evidence of graft dysfunction. However, close clinical monitoring should be performed during the combination and shortly after antibiotic treatment.
Tacrolimus: in hepatic transplant patients initiated on CellCept and tacrolimus, the AUC and Cmax of MPA, the active metabolite of CellCept, were not significantly affected by coadministration with tacrolimus. In contrast, there was an increase of approximately 20 % in tacrolimus AUC when multiple doses of CellCept (1.5 g BID) were administered to patients taking tacrolimus. However, in renal transplant patients, tacrolimus concentration did not appear to be altered by CellCept (see also section 4.4).
Other interactions: co-administration of probenecid with mycophenolate mofetil in monkeys raises plasma AUC of MPAG by 3-fold. Thus, other substances known to undergo renal tubular secretion may compete with MPAG, and thereby raise plasma concentrations of MPAG or the other substance undergoing tubular secretion.
Live vaccines: live vaccines should not be given to patients with an impaired immune response. The antibody response to other vaccines may be diminished (see also section 4.4).
4.6 Pregnancy And Lactation
It is recommended that CellCept therapy should not be initiated until a negative pregnancy test has been obtained. Effective contraception must be used before beginning CellCept therapy, during therapy, and for six weeks following discontinuation of therapy (see section 4.5). Patients should be instructed to consult their physician immediately should pregnancy occur.
The use of CellCept is not recommended during pregnancy and should be reserved for cases where no more suitable alternative treatment is available. CellCept should be used in pregnant women only if the potential benefit outweighs the potential risk to the foetus. There is limited data from the use of CellCept in pregnant women. However, congenital malformations including ear malformations, i.e. abnormally formed or absent external/middle ear, have been reported in children of patients exposed to CellCept in combination with other immunosuppressants during pregnancy. Cases of spontaneous abortions have been reported in patients exposed to CellCept. Studies in animals have shown reproductive toxicity (see section 5.3).
Mycophenolate mofetil has been shown to be excreted in the milk of lactating rats. It is not known whether this substance is excreted in human milk. Because of the potential for serious adverse reactions to mycophenolate mofetil in breast-fed infants, CellCept is contraindicated in nursing mothers (see section 4.3).
4.7 Effects On Ability To Drive And Use Machines
No studies on the effects on the ability to drive and use machines have been performed. The pharmacodynamic profile and the reported adverse reactions indicate that an effect is unlikely.
4.8 Undesirable Effects
The following undesirable effects cover adverse reactions from clinical trials:
The principal adverse reactions associated with the administration of CellCept in combination with ciclosporin and corticosteroids include diarrhoea, leucopenia, sepsis and vomiting, and there is evidence of a higher frequency of certain types of infections (see section 4.4).
Malignancies:
Patients receiving immunosuppressive regimens involving combinations of medicinal products, including CellCept, are at increased risk of developing lymphomas and other malignancies, particularly of the skin (see section 4.4). Lymphoproliferative disease or lymphoma developed in 0.6 % of patients receiving CellCept (2 g or 3 g daily) in combination with other immunosuppressants in controlled clinical trials of renal (2 g data), cardiac and hepatic transplant patients followed for at least 1 year. Non-melanoma skin carcinomas occurred in 3.6 % of patients; other types of malignancy occurred in 1.1 % of patients. Three-year safety data in renal and cardiac transplant patients did not reveal any unexpected changes in incidence of malignancy compared to the 1-year data. Hepatic transplant patients were followed for at least 1 year, but less than 3 years.
Opportunistic infections:
All transplant patients are at increased risk of opportunistic infections; the risk increased with total immunosuppressive load (see section 4.4). The most common opportunistic infections in patients receiving CellCept (2 g or 3 g daily) with other immunosuppressants in controlled clinical trials of renal (2 g data), cardiac and hepatic transplant patients followed for at least 1 year were candida mucocutaneous, CMV viraemia/syndrome and Herpes simplex. The proportion of patients with CMV viraemia/syndrome was 13.5 %.
Children and adolescents (aged 2 to 18 years):
The type and frequency of adverse reactions in a clinical study, which recruited 92 paediatric patients aged 2 to 18 years who were given 600 mg/m2 mycophenolate mofetil orally twice daily, were generally similar to those observed in adult patients given 1 g CellCept twice daily. However, the following treatment-related adverse events were more frequent in the paediatric population, particularly in children under 6 years of age, when compared to adults: diarrhoea, sepsis, leucopenia, anaemia and infection.
Elderly patients ( :
Elderly patients (
Other adverse reactions:
Adverse reactions, probably or possibly related to CellCept, reported in
Adverse Reactions, Probably or Possibly Related to CellCept, Reported in Patients Treated with CellCept in Renal, Cardiac and Hepatic Clinical Trials when Used in Combination with Ciclosporin and Corticosteroids
Within the system organ classes, undesirable effects are listed under headings of frequency, using the following categories: very common (
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
| |
|
|
|
|
|
Note: 501 (2 g CellCept daily), 289 (3 g CellCept daily) and 277 (2 g IV / 3 g oral CellCept daily) patients were treated in Phase III studies for the prevention of rejection in renal, cardiac and hepatic transplantation, respectively.
The following undesirable effects cover adverse reactions from post-marketing experience:
The types of adverse reactions reported during post-marketing with CellCept are similar to those seen in the controlled renal, cardiac and hepatic transplant studies. Additional adverse reactions reported during post-marketing are described below with the frequencies reported within brackets if known.
Gastrointestinal: gingival hyperplasia (
Disorders related to immunosuppression: serious life-threatening infections including meningitis, endocarditis, tuberculosis and atypical mycobacterial infection. Cases of BK virus associated nephropathy, as well as cases of JC virus associated progressive multifocal leucoencephalopathy (PML), have been reported in patients treated with immunosuppressants, including CellCept.
Agranulocytosis (
Blood and lymphatic system disorder:
Cases of pure red cell aplasia (PRCA) have been reported in patients treated with CellCept (see section 4.4).
Isolated cases of abnormal neutrophil morphology, including the acquired Pelger-Huet anomaly, have been observed in patients treated with CellCept. These changes are not associated with impaired neutrophil function. These changes may suggest a 'left shift' in the maturity of neutrophils in haematological investigations, which may be mistakenly interpreted as a sign of infection in immunosuppressed patients such as those that receive CellCept.
Hypersensitivity: Hypersensitivity reactions, including angioneurotic oedema and anaphylactic reaction have been reported.
Congenital disorders: see further details in section 4.6.
Respiratory, thoracic and mediastinal disorders:
There have been isolated reports of interstitial lung disease and pulmonary fibrosis in patients treated with CellCept in combination with other immunosuppressants, some of which have been fatal.
4.9 Overdose
Reports of overdoses with mycophenolate mofetil have been received from clinical trials and during post-marketing experience. In many of these cases, no adverse events were reported. In those overdose cases in which adverse events were reported, the events fall within the known safety profile of the medicinal product.
It is expected that an overdose of mycophenolate mofetil could possibly result in oversuppression of the immune system and increase susceptibility to infections and bone marrow suppression (see section 4.4). If neutropenia develops, dosing with CellCept should be interrupted or the dose reduced (see section 4.4).
Haemodialysis would not be expected to remove clinically significant amounts of MPA or MPAG. Bile acid sequestrants, such as cholestyramine, can remove MPA by decreasing the enterohepatic re-circulation of the drug (see section 5.2).
5. Pharmacological Properties
5.1 Pharmacodynamic Properties
Pharmacotherapeutic group: immunosuppressive agents ATC code L04AA06
Mycophenolate mofetil is the 2-morpholinoethyl ester of MPA. MPA is a potent, selective, uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase, and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation into DNA. Because T- and B-lymphocytes are critically dependent for their proliferation on de novo synthesis of purines whereas other cell types can utilise salvage pathways, MPA has more potent cytostatic effects on lymphocytes than on other cells.
5.2 Pharmacokinetic Properties
Following oral administration, mycophenolate mofetil undergoes rapid and extensive absorption and complete presystemic metabolism to the active metabolite, MPA. As evidenced by suppression of acute rejection following renal transplantation, the immunosuppressant activity of CellCept is correlated with MPA concentration. The mean bioavailability of oral mycophenolate mofetil, based on MPA AUC, is 94 % relative to IV mycophenolate mofetil. Food had no effect on the extent of absorption (MPA AUC) of mycophenolate mofetil when administered at doses of 1.5 g BID to renal transplant patients. However, MPA Cmax was decreased by 40 % in the presence of food. Mycophenolate mofetil is not measurable systemically in plasma following oral administration. MPA at clinically relevant concentrations is 97 % bound to plasma albumin.
As a result of enterohepatic recirculation, secondary increases in plasma MPA concentration are usually observed at approximately 6 – 12 hours post-dose. A reduction in the AUC of MPA of approximately 40 % is associated with the co-administration of cholestyramine (4 g TID), indicating that there is a significant amount of enterohepatic recirculation.
MPA is metabolised principally by glucuronyl transferase to form the phenolic glucuronide of MPA (MPAG), which is not pharmacologically active.
A negligible amount of substance is excreted as MPA (< 1 % of dose) in the urine. Orally administered radiolabelled mycophenolate mofetil results in complete recovery of the administered dose, with 93 % of the administered dose recovered in the urine and 6 % recovered in the faeces. Most (about 87 %) of the administered dose is excreted in the urine as MPAG.
At clinically encountered concentrations, MPA and MPAG are not removed by haemodialysis. However, at high MPAG plasma concentrations (> 100µg/ml), small amounts of MPAG are removed.
In the early post-transplant period (< 40 days post-transplant), renal, cardiac and hepatic transplant patients had mean MPA AUCs approximately 30 % lower and Cmax approximately 40 % lower compared to the late post-transplant period (3 – 6 months post-transplant).
Renal impairment:
In a single dose study (6 subjects/group), mean plasma MPA AUC observed in subjects with severe chronic renal impairment (glomerular filtration rate < 25ml•min-1•1.73 m-2) were 28 – 75 % higher relative to the means observed in normal healthy subjects or subjects with lesser degrees of renal impairment. However, the mean single dose MPAG AUC was 3 – 6-fold higher in subjects with severe renal impairment than in subjects with mild renal impairment or normal healthy subjects, consistent with the known renal elimination of MPAG. Multiple dosing of mycophenolate mofetil in patients with severe chronic renal impairment has not been studied. No data are available for cardiac or hepatic transplant patients with severe chronic renal impairment.
Delayed renal graft function:
In patients with delayed renal graft function post-transplant, mean MPA AUC (0–12h) was comparable to that seen in post-transplant patients without delayed graft function. Mean plasma MPAG AUC (0
Hepatic impairment:
In volunteers with alcoholic cirrhosis, hepatic MPA glucuronidation processes were relatively unaffected by hepatic parenchymal disease. Effects of hepatic disease on this process probably depend on the particular disease. However, hepatic disease with predominantly biliary damage, such as primary biliary cirrhosis, may show a different effect.
Children and adolescents (aged 2 to 18 years):
Pharmacokinetic parameters were evaluated in 49 paediatric renal transplant patients given 600 mg/m2 mycophenolate mofetil orally twice daily. This dose achieved MPA AUC values similar to those seen in adult renal transplant patients receiving CellCept at a dose of 1 g bid in the early and late post-transplant period. MPA AUC values across age groups were similar in the early and late post-transplant period.
Elderly patients ( :
Pharmacokinetic behaviour of CellCept in the elderly has not been formally evaluated.
Oral contraceptives:
The pharmacokinetics of oral contraceptives were unaffected by coadministration of CellCept (see also section 4.5). A study of the coadministration of CellCept (1 g bid) and combined oral contraceptives containing ethinylestradiol (0.02 mg to 0.04 mg) and levonorgestrel (0.05 mg to 0.15 mg), desogestrel (0.15 mg) or gestodene (0.05 mg to 0.10 mg) conducted in 18 non-transplant women (not taking other immunosuppressants) over 3 consecutive menstrual cycles showed no clinically relevant influence of CellCept on the ovulation suppressing action of the oral contraceptives. Serum levels of LH, FSH and progesterone were not significantly affected.
5.3 Preclinical Safety Data
In experimental models, mycophenolate mofetil was not tumourigenic. The highest dose tested in the animal carcinogenicity studies resulted in approximately 2 – 3 times the systemic exposure (AUC or Cmax) observed in renal transplant patients at the recommended clinical dose of 2 g/day and 1.3 – 2 times the systemic exposure (AUC or Cmax) observed in cardiac transplant patients at the recommended clinical dose of 3 g/day.
Two genotoxicity assays (in vitro mouse lymphoma assay and in vivo mouse bone marrow micronucleus test) showed a potential of mycophenolate mofetil to cause chromosomal aberrations. These effects can be related to the pharmacodynamic mode of action, i.e. inhibition of nucleotide synthesis in sensitive cells. Other in vitro tests for detection of gene mutation did not demonstrate genotoxic activity.
Mycophenolate mofetil had no effect on fertility of male rats at oral doses up to 20 mg•kg-1•day-1. The systemic exposure at this dose represents 2 – 3 times the clinical exposure at the recommended clinical dose of 2 g/day in renal transplant patients and 1.3 – 2 times the clinical exposure at the recommended clinical dose of 3 g/day in cardiac transplant patients. In a female fertility and reproduction study conducted in rats, oral doses of 4.5 mg•kg-1•day-1 caused malformations (including anophthalmia, agnathia, and hydrocephaly)in the first generation offspring in the absence of maternal toxicity. The systemic exposure at this dose was approximately 0.5 times the clinical exposure at the recommended clinical dose of 2 g/day for renal transplant patients and approximately 0.3 times the clinical exposure at the recommended clinical dose of 3 g/day for cardiac transplant patients. No effects on fertility or reproductive parameters were evident in the dams or in the subsequent generation.
In teratology studies in rats and rabbits, foetal resorptions and malformations occurred in rats at 6 mg•kg-1•day-1 (including anophthalmia, agnathia, and hydrocephaly) and in rabbits at 90 mg•kg1•day-1 (including cardiovascular and renal anomalies, such as ectopia cordis and ectopic kidneys, and diaphragmatic and umbilical hernia), in the absence of maternal toxicity. The systemic exposure at these levels is approximately equivalent to or less than 0.5 times the clinical exposure at the recommended clinical dose of 2 g/day for renal transplant patients and approximately 0.3 times the clinical exposure at the recommended clinical dose of 3 g/day for cardiac transplant patients.
Refer to section 4.6.
The haematopoietic and lymphoid systems were the primary organs affected in toxicology studies conducted with mycophenolate mofetil in the rat, mouse, dog and monkey. These effects occurred at systemic exposure levels that are equivalent to or less than the clinical exposure at the recommended dose of 2 g/day for renal transplant recipients. Gastrointestinal effects were observed in the dog at systemic exposure levels equivalent to or less than the clinical exposure at the recommended dose. Gastrointestinal and renal effects consistent with dehydration were also observed in the monkey at the highest dose (systemic exposure levels equivalent to or greater than clinical exposure). The nonclinical toxicity profile of mycophenolate mofetil appears to be consistent with adverse events observed in human clinical trials which now provide safety data of more relevance to the patient population (see section 4.8).
6. Pharmaceutical Particulars
6.1 List Of Excipients
CellCept 1 g/5 ml powder for oral suspension:
sorbitol
silica, colloidal anhydrous
sodium citrate
soybean lecithin
mixed fruit flavour
xanthan gum
aspartame* (E951)
methyl parahydroxybenzoate (E218)
citric acid anhydrous
* contains phenylalanine equivalent to 2.78 mg/5 ml of suspension.
6.2 Incompatibilities
This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.
6.3 Shelf Life
The shelf-life of the powder for oral suspension is 2 years.
The shelf-life of the reconstituted suspension is 2 months.
6.4 Special Precautions For Storage
Powder for oral suspension and reconstituted suspension: Do not store above 30 °C.
6.5 Nature And Contents Of Container
Each bottle contains 110 g of powder for oral suspension. When reconstituted, the volume of the suspension is 175 ml, providing a usable volume of 160 – 165 ml.
A bottle adapter and 2 oral dispensers are also provided.
6.6 Special Precautions For Disposal And Other Handling
Because mycophenolate mofetil has demonstrated teratogenic effects in rats and rabbits, avoid inhalation or direct contact with skin or mucous membranes of the dry powder as well as direct contact of the reconstituted suspension with the skin. If such contact occurs, wash thoroughly with soap and water; rinse eyes with plain water.
It is recommended that CellCept 1 g/5 ml powder for oral suspension be reconstituted by the pharmacist prior to dispensing to the patient.
Preparation of suspension
1. Tap the closed bottle several times to loosen the powder.
2. Measure 94 ml of purified water in a graduated cylinder.
3. Add approximately half of the total amount of purified water to the bottle and shake the closed bottle well for about 1 minute.
4. Add the remainder of water and shake the closed bottle well for about 1 minute.
5. Remove child-resistant cap and push bottle adapter into neck of bottle.
6. Close bottle with child-resistant cap tightly. This will assure the proper seating of the bottle adapter in the bottle and child-resistant status of the cap.
7. Write the date of expiration of the reconstituted suspension on the bottle label. (The shelf-life of the reconstituted suspension is two months.)
Any unused product or waste material should be disposed of in accordance with local requirements.
7. Marketing Authorisation Holder
Roche Registration Limited
6 Falcon Way
Shire Park
Welwyn Garden City
AL7 1TW
United Kingdom
8. Marketing Authorisation Number(S)
EU/1/96/005/006 CellCept (1 bottle 110g)
9. Date Of First Authorisation/Renewal Of The Authorisation
Date of first authorisation: 14 February 1996
Date of latest renewal: 14 February 2006
10. Date Of Revision Of The Text
13 October 2009
LEGAL STATUS
POM
Detailed information on this medicinal product is available on the website of the European Medicines Agency (EMEA) http://www.emea.europa.eu/
No comments:
Post a Comment